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ABSTRACT

An experimental investigaticn and correlative snalyeis vere conduoted
to determine the pressure distritition over the surface of parachute
oanopies during the period of inflation for the infinite mass ocase and
to oorrelate pressure coefficients with ianflating canopy shapes.
Parachute canopy modela of Ciroular Plat, 10% Eatended I :-%, Ringslot,
. sud H°2L000 cecigni VBIR .emied wides suilalic Zeas aonditions in
: 9 x 12 ft lov spesd wind tunnel. External and internal pressure values
were measured at various loocations over the surface of the model cano-
E pies throughout the period of inflation, snd genoraliszed canopy profile
: shapes were obtained by neans of photographic analyeis.

Pressure coefricients derived for the steady state (fully opan sanopy)

are quite comparable to the results of previous measurements. Pesk 3

e
+ e,

pressurs values during the uneteady poriosd of naflation were fouud to
: be up to 5 times as great as steady state valucs.

The relationships between the prsesure distriti-tion and time for each
of the canopy models deployed at free-stream velocities betwaen 70 and
160 ft/sec are presented in detail and correlated with chaaging canopy

o e T

shape. A oomplete ehape analysis i1s made and a mathematical model is
proposed,
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1. IETRODUCTION

Hinimus weight and packing voiume are basio requirements for
parachute canopies for sny application. To meet these require-
ments, knovledge of the stress distridution in the ocasropy is &
prerequisite for the parachute designer. This applies in parti-
cular to the period of transient force generstion, the parachute
filling or opening process. In order to accomplish a valid deter-
mination of the canopy stress distridution and since atiempts to
measure the actusl streeses in parcachute canopies during the
transient state have not been successful, the pressure distridbu.
tion over the surface of an inflating parechute canopy must be
known to yield a basis for the calculation. In addition, the shape
and shape changes which a parachute canopy undergoes during the

period of inflation must be known so that the calaulation procedure
»ay be generalized.

For the ateady state condition, that is foxr the fully inflated
parachute cancpy, the ocalculation of stresses in the canopy has been
attempted by Jones [1] and by Topping et al [2] . Only recently, an
approach was developed by Heinrich and Jaaison [3] to predict the
canopy stress distribution for the transient state. Although thie
calculatlion approach ccnsidars synthesised canopy profiles shapes
through which the canopy evolves during the period of inflation,
pressure coefficients were based upon resulis obtained during steady
state measurements on these synthesisad canopy shapes.

A great difficulty for all steady state considerations is that
maximum stresses ocour during the rapidly ocourring canopy shape

rhan e -

changss of ithe filling process, and pressure and stress values can
vastly sxcead stesiy state values.

A number of attempts have been made in the past to measure the aatual
pressurs versus time relationships during the process of inflation.
These attamptis, hovever, have besn unsuccessful primarily due to the
non-availadbility of & pressure sensing method or devico which would
yield sccurate results under the acooeleration levels encountered

. i ot
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during canopy inflation,

By means of a specially develnped pressure transducer it has now
become possible to measure pressure values at various locations
on the canopy. In addition; =2n anslysis was made of the changing
canopy shape and related to the ochanging pressure distribution.
The experimental investigation and correlative analysis were con-
ducted for the caese of parachute opening under infinite mass cone-
iiltions, the case where there 1s no or only a relatively small
velocity decay during the period of canopy inflation. Although
thre resulta of this investigation do not apply to all cases of
»arachute application, they do represent a major step towards a
better knowledge of the parachute opening dynamics.

«. TEST CONDITIONS

A. Psrachute Canopy Models

The investigation was performed on parachute canopy models of 4
basic types or design:

1. Solid cloth, circular flat type

2., Solid cloth, 10% flat extended type

3. Ringslot type

4. Plat circular ribbon (FIST) type
ihe solid cloth, circular flat type canopy modei was based upon
the design of the personnel type (C-9) canopy, incorporated 28
gorea, and had a nominal diametor (DO) of 53.5 inches.

The dea’gun cf ithe solid cloth, 10% fiat extended skirt type canopy
model was based upon that of the troop type (T-10) canopy. The model
incorpsrated 30 gores and had & nominal diameter (Do) ef 62.0 inches.

The ringslex and flat circular ribbon (FIST) type canopy models were

tabricated of 24 gores with a geometric porosity of 16% for the
ringalot snd 18% for ths fla4é circular {FIST) types. The ringslot
tyve cencyy Lodel was constructed of 5 cloth rings and 1 vertical
taps in #al gore, the FIST type ocanopy model was constructsd with
27 . «xpaval ribbons and 4 vertical tapes in each gore. These models

hesd a uominel diameter (Do) of $3.5 inches.

o e LS SRR ZE A N



The cloth used in the fabrication of the canopy models met the
German Kennblatt 1004 (Perlon; nominal cloth permeability at
1/2 inch H 0s 130 cfm/!‘t2; weight: 1.45 oz/ydz).

E Dravings of the four models are included in Appendix I.

—

B. Test Facilities and Test Method

[

All experimental investigations were performed in the 9 x 12 ft¢
low speed wind tunnel of the Deuteche Forschungsanstalt fir Luft-
und Raumfahrt e.V., (DFL) in Braunschweig.

A schematic presentation of the ltest arrangement is shown in
Figure 1. The canopy models were mounted in the wind tunnel test
section in a stretched-out position, dut prevented frcm inflating }
by two leather clamps, one enclosing the skirt and the other enclo-
sing the middle section of the canopy. The wind tunnel was then
brought up to specific speeds (70, 100, 130 and 160 ft/sec) and

the clamps were suddenly released by burning a thin wire and

by the aotion of springs attached to the clamps. Upon rslease of

the eclamps, the canopy models were free tc inflstes.

The distribution of the locel pressure (internal, external and
differentisl) over the canopy model from skirt to vent was measured
by strain gage type pressure transducers attached to the canopy

h surface at specific locations. The pressure transducers were developed
by the Deutsche Forschungsanstalt fir Luft- und Raumfahrt. A view of

tha pragsurs transduser is shown in Figure 2. The physical specifi-

cations of the sensing eloment are: weight 0.2 oz, diameter 1.2

inches, thickness 0.35 inches, capacity + 0.5 psi,

Faoh sensing elsment is temperature and acceleration ocompensated. |
Errors in per cent of output under applied pressurse of 0.5 psi as
& function of g-loadings applied statically in three¢ mutuslly perpen-
dicular planes are shown in Mgure 3. The influence of accelerations
up to 200 g's 1s below 3% of the full scale output of the transducer.
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Since accelerations experienced on the parachute canopyv during in-
flation are not static but dynamic, that is portions of the cloth
surface may move or oscillste with frequencies up to 100 cps, the
frequency response of the transucer must be considered in order

to determine the total introduced error under dynamic conditions.
As indioated in FPigure 4, the point of resonance of the iransducer
ie approximately 250 cps with s maximun error of 9 % of the total
output at an applied pressure of 0.3 psi. Up to an applied frequency
of 170 ops, this error is only 1.5 %. Output voltage and linearity
of the pressure transducer over a range of applied pressures are
shown in Figure 5.

In addition to the pressure valuea, the forces gensrated by the
parachute canopy vere aleo recorded as measured by a strain gage

type tenaiometer. Hottinger carrier systems were used for ths elec-
tronic measurements and the resulting signals recorded on a light-beam
osoillogrep: Honeywell Visicorder.

C. Teat Procedure

A toial of four prassure transducers were located along the cord
center lines of the canopies and diatributed 90 degrsss apart
around the surface of the canopies bascause of weight influences. In
addition, the location of the transducers was stasggered in a manner
shown in Mgures 7 through 52 to obtain pressure measurements near
the skirt, near the vent, and at two intermediate positions on the
canopy. Additional measurements were made for comparative purposes
with the transducers located along the gore center line (Pigures 103
thru 105).

The complete filling process was photographed from one side by &
high speed camera with 100 frames per second. From the photographic

record, canopy profile shapes and projected canopy diametsr values
were obtained.

At the time of removal of the clamps setting the ocsnopy free to
inflate (tine t = U), a time base signal of 50 cps was initiated
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and reocorded on both the oscillogram aad the photographic film for
synchronisation purposes.

The internal, extermal, and differential pressure values vere measured
and recorded during different runs. For the measuraments c¢f the in-
ternal and external pressures, the barometric pressure was conducted
by tubings to the outer and inner pressure tape of the transducer,
respectively.

A total of four separats messurements were made for each condition

in order to determine the repsatadility of the measurements and obtain
valid aversge data. Thus, four equal tewt runs for each of the four
cancpy types st four different speeds to obtain throe different pressure
(differential; interial, external) versus time relationships were per-
formed for a total of 192 wind tunnel test runa.

In order to obtain background data on the acqeleration distribution
over the parachute canopies during the period of inflation, accelera-
tion measurements were performed on each of the four canopy types
for each of the four deployment speed conditions, For this purpose,
miniature strain gage type aocelerometers of approxinately the zame

size and weight as those of the pressure transducers wers located at

the saums points on the cancplies where pressure meaguremenis vers taken,
Maximum values were measured on the solid cloth flat ociroular type
canopy models at a location near the canopy skirt which at the largest
deployment speed (160 ft/sec) is accelerated at the beginning of in-
flation at approximately 50 g's and decelerated at the end of iafla-

tion at approximately 200 g's,

BESULTS AND ANALYSIS

The two major objectives of the program vera:s

1. To determine the characteristic relationships betwveen the pressure
and time for each of the four canopy types,

2. To correlate the pressure values and canopy shape at any point
during canopy inflstion.
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In addition., : detailed ansliysis of ths Sanopy ahaps development
for the pericd . ¢ canupy inflation under infinite macs coperating

csonditions war i1~ be attempted.

A. Canopy Pressure Distribdution

Reproductions of actusl casoillograph records obtained froa the
tests are shown in Figure 6. These records represent the regzistra-
tion obtsined on a flat circular ribbon type (FPIST) canopy during
four different test ruas conducted at the same¢ deployment condition
of 130 ft/sec. Analyzing these registrations, tvo general statemente

may bYe made:

1. The reproducibility of the four measurements made at any one
teest condition was relatively good. Thie applies in particular

to the so0lid cloth type canopies. Therefore, since no significant
deviations occurred the results of only one¢ measurement fur each

canopy type and deployment condition are included in this report.

2. As the original recerdings i1llustrate, the pressures fluctuated
during the steady state psriod (canopy fully inflated) due to flow
conditions. During the unsteedy period (canopy inflation), some
fluctuations can ocnur due to the unsteady movement of the cancpy
material, in particular in the skirt area; however the mean valuca
show increesing pressures with a more or less prominent peak. The
determination of mesn steady state valuss was someiimes Gifficult

due to fluctuations in the pressure values and since actual sieady

state conditions were not reached immediately after cenopy iiflation,

but several seconds later. To avoid cable bLreakage and other damages
to the .8t set-up, eapecially at the high deployment velociiy, the
wvind tunnel was shut down immediately after canopy filling was com-
pleted. To obtain more accurate steady state values, readings maounld
be taken for at least five seconds during the steady state period.
In genersl, however, the steady state values obtained are quite

comparable to the results of former measurements [4] .
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The local pressures measursd on the surfars of the canopies

wvere differential pressures, dp, since atmosheric pressure vas
conducted by iuding to one of the porte of the pressurs traneduosrs.
Yor open test section wind tunnels, the ataoapheric pressurs ocan dbe
assuned to be equal to the statio preseurs of the airflow. The pressure
values measursd are sxpressed in cosffiocient form by relating theas

to the dynamia nressure of the airflow., Thus

I

q
As mentionod abdbove, the differential, internal, and external prsssure
distribtutions wvere measured. For each of the canopy types and test
conditions, the differential, internal, and external pressure cceffi-
cients (°pd' °p1’ and op‘) for the four locations on the ocanopy were
generalized {smoothed) ané are plotted as a function of time in
Figures 7 thru 52. In order to correlate pressure values to canopy
shape, the inatantanwous projected canopy diameter, D_, was svaluated
from the photographic recordings. Therefore, the relationship between
projected canopy dismeter »atio, DP/DO, as & function of time is shown
alao for esch test run. A presentation of all three pressure coeffi-
cient (Gpd' Ly cp.) versus time relationships for sach test ocondition

together with reproductione of the original oscillograph recordings is
included in Appendix II,

In general, the pressure peak ocours first in the canopy vent ares
and travele very rapidly towards the skirt ares. The pressuro—peaks
occur glightly prior to the t-me at which the canopy reaches its
fully inflated shape for the first time. For the solid oloth type
canopy mcdels,; the prescure psaks from vent to skirt follow very
rapidiy one another, being separated in time only approximately 1/100
of a ssconi, The last pesk in the skirt area ocours at almost exactly
the time ati which the canopy is fully inflated. For the geometric
porusity type oanopies, ths peak aeparation time is somevhat greater,
for the FIST type oancpy epproximately 5/100 to /10 of s second, for
the ringslot type canopy 1/10 of a second or more. The last peak in

1
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3 area of the canopy skirt is again close to but before the fully
inflated projected cenopy diameter is reached for the first time.

Aside from the determination of preasurs versus time relation-

ships and pressure distributiona, the determination of the magnitude
of the pressure peaks is a significant result of this program. For
comparative purposee, a pressurs factor, Fb, can be defined which

is the ratio between the maximum value of the pressure coefficient,

opnsx' and the value of the steady state pressure coefficient,
°pmt' or

o

pnax

Fp -3

pet

A compilation of all maximum and steady state pressure coeffi-
cisnt values (opnax and °pet) at the four locations on the four
canopy types, the time increment between occurrence of pressure
penks in the aresas of canopy vent and skirt, and the time at which
the fully inflated projected canopy diameter, Dp, is reached for

the first time ic given in Table I for each of the four de;:loyment
speed conditions, 'o'

The steady state pressure coefficients, °p-t' in the area of theo
canopy skirt are approximately 1,0 for the internal and-0.7 for

the external presasures, resulting in a differential pressure
coefficient of 1.7. Thiz is true for the extended skirt, FIST,

and ringslot type canopies. There values are comparable to the results
obtcined by Eeinrich [4] . For the circular flat type canopy steady
siate pressure coefficients of up to 1.5 for ths internal, -1.0 for the
¢xternal, and 2.5 for the differential pressures wsre obtained. These
values ars high and there is a wide variation of ali values acquired

on this canopy type.'!orc teats appear to be necessary to verify the
findings.

On the circular flat type canopy; peak differential pressures during
inflation resched approximaiely thres times the steady velues at full
canopy inflation. In one test, a pressure factor of 5.4 was even

12




obtained at a location near the canopy skirt. At the higher deploy-
ment velocities of 150 and 160 ft/sec, the pressure factor ¢acreased
slightly due to the alightly lower peak preasure coafficient and

the somevhat higher ;kondy satate pressure ocoefficiant values.

Por the extended akirt type canopy, differential pressure fectors
from 2.5 at & loocation near the canopy veat to 3.6 at a location
near the ocanopy skirt were found. Again as for the ocirocular flat
type ocanopy, the pressure factors decreased with increasing dsploy-~
ment velocity. At s deployment velocity of 160 ft/too. the pressures
factors varied from a value of 2.1 %0 2.8 from ths location near
the oanopy vent to cne near the skirt.

Yor the gecmetric porosity type canopiles, the pressure factors

are remarksably lower. The maximum pressure factor obtained on the

flat ciroular ribbon (FIST) type canopy waa 2.3, decreasing to

1.7 at the highest deployment velocity. For the ringslot type oanopy,
the maximum pressurs factor was approximately 1.6, with no significant
differences betwaen the low and the high deployment velocities. For
the geometric porosity type canopies, there was no significant diffe-
rance in the magnitude of the pressure factor for locations near ths
canopy vent or the skirt.

Absolute filling times of esach of the omnopy typss decrease with
inoreasing deployment valosity as can ba reen from the Pigursee and

from the tabulated date in Table I. The filling times are shortsst

for the circular flat type cancpy, become longer for the extended skirt
and FIST ridbdon type canopies, and are longeast for the rirgslot type
CRNOPY .

A correlation betwren rressurs changss and changing canopy shape may
be obtained from Flguros 5> thru 60 in which the pressure coefficien.s
(°pd’ “p1
disaeter ratio, DP/DO. These diagrass clarify the pressure-shape
relationship, Por the ociroular flat type canopy, the curves for the
four looations of the pressure sensing elements run very close together,
thus indicating a very quick filling of the canopy. Thess relationships

’ cp.) are plotted as a funotion of the projested canopy

13
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B, Canopy Shape Analysis

The objective of a "Shape Analysis" for the filling period of the
parachute canopy waes the mathematical description of the canopy
shaps as a function of time., Since the canopy is approximately
rotational eymmetric, it is sufficient to coneider the profile
views of the canopy.

To obtain representative profile views, specific frames of motion
picturcs itaken from the side were snalyzed. The profile views thus
obtained yield a somewhat irregular and unsymmeiric shape, as illu-
strated in Figures 61 and 62 by the solid lines which show an example
for the ciroular flat type canopy. These shapes, howsvr:, can be
graphically made symmetric, as is shown by the broken lines. The
resulting shape shall be called the Symmetrized Photographic Shape.

This shape can be idealized in the following manner and then be
described by means of specific parameters. This sghape shall be
called the Idealized Photographic Shape. The enilre process of
canopy filling may be divided into two phases. During Phase I, the
canopy fills from the skirt towards the vent. The canopy shapes
during this part of the filling period cen then be described as
consisting of four bodies of revolution depicted by the profile
views in Pigure 631

1. A conical frustrum with lower base 2r, upper base 2a,
and height o, ‘

2. An added half-ellipsoid with major semi-axis a and minor
ser o

ieaxis b

3. An added coylinder,

4. And an added hemisphero. Ths height of the cylinder and

added hemisphere slong the axis of revolution is O4» and
the diameter of the cylinder is 2r,.
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At the time where

o =Te -V (1 '-l’u - x'«2/‘2)

st N b, ¢ iV 13 s e s

the cylinder disappears, and only the hemispherse roininn added
to the half-ellipeoid, meeting it with & secant equal to 2R,

Ao defined by o, and r,, the radiue of the hemisphere is then

=N

T - (02 + r,z)/20 ’

wheXry

=gy +b (1 V1 -5,

Phase II of the filling prooeas begins at that point of time

‘at which the canopy shape has assumed the shape of a conical
4rruetrum to which is added & half-ellipsoid. From this point on
the canopy fills from the vent towards the skirt. For the. descrip-
tion of the canopy shape during this portion of the filling period,
only four parameters are required: the lower base 2r, the upper
base 2a, the height p of the conical frustrum, and the minor
liaif-axie of the ellipsoid, b. During Phase II the canopy fills
compleiely and opens with resulting rapid changes of 2r and 2a.
Phase 1’ may be defined as the steady state period in which the
cancpy shaps no longer changes significantly and the values of each
of the rour parauetare orly fluctuate about their steady mean values,

An approximated description of the Idemlisze

Photographic Shape
es a function of time 4is possible by plotting the parameters of
the

ary
Do'

shepe varsue time. For comparative purposes, the parameters
pade dizansionless by dividing by the nominal canopy diameter,
in wddition, the time parameter is made dimensicnless by divi-
ding . iwe by a (ictitious filling time t,. This fictitious

—
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filling time is the time from burning the wire which held the
leather clamps around the stretshed-out canopy to the point vhers
the steady state mean velues of the parameters vere reached for the
first time.

The parameters of the ideaiiszed cancopy shaps ars now made a function

of t/t,. With this, the Idealised Photographic Shape can be construc-

ted for any valve of t/t, for any specific deployment condition and
correlated with the pressure distribution for the same time t/t,.
Figures 64 thru 79 are plottings of the parsmeters of the Idealized
Photographic Shape obtained by this method for the four types of
parachute canopies. A qualitatively similar behavior csn be seen
for all four types of canopies.

' The parameters 2:/D°. 2r/D°. b/Do and gb/Db increase in value during
Phase I, indicating a filling of the cancpy from the skirt tovards

the vent with aimultaneous e:xlargement of the shape. During Phase 11
the values of the parameters 2a/D , 2r/D  and b/D  are increasing
further until they reach the final steady state value at t/t, = 1.

On the other hand, the velue of the parameter g/D_ decreases after

reaching s maximuz value, By plotiting all parameters for one type

of canopy for the four different daployament speeds on one graph, all
points for one parameter lie relatively close together as may be
seen from FPigures 80 thru 83. Therefore, it may be concluded that
for the infinite mass cage the development of ihe canopy shape is
primarily dependent upon the dimensionless time ratio t/t,. This
agreas with findings by Berndt [5} whi:h iadicated that for the
finite mass cass the growth in projected canopy area as a function
of the time ratio t/t‘ follows an ldentiocal relationship for a given
caxopy type regardless of speed and altitude of deployment.

The spread of the measured points in Figurss 80 thru 83 is probably

duz to the inexaci reproducibility of the filling process of &
parsechute canopy. R Pro¢ | .
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The paramsters of the Idealized Photographic Shape can also be

mathematically expressed as a function of t/t, foraing & polynominl

in t/t,. The ococefficiente of this polynomisl are obtained by the
method of least squares. ‘

A regrescion to the fourth power was made for Phase II of the filling
process for all four types of parachute canopies and for the four

deplcyment velocities. Table II shows the results for each parameter
in the form

f=a +a t/t, + s, (1;/%,,)2 + 8y (t/t,,)3 + 8, (t/t,,)4

The shape can be desorided approximately dy the parameters of the
Idealized Photographic

Shape ststed in graphic form or in terme of
s polynonial. N S R T
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4. JUSURY ARD RECOMMENDATIONS

The change of the pressure distridbution over the surface of four
different types of pecrachute oanopies during the period of inflation
vas experimentally determined for the infinite mass cperating condition
during lov speed wind tunnel tests. The changing canopy shaps during
inflation was also determined and correlated to the changing pressures.

The results are presented in detail and provide for the firat time a
good knowledge of this vital relationship. In order to develop an
anslytical relationship detween the changing pressure and the changing
canopy shape, many more eiperimentel tests will be required. These

are necessary to sliaminate abnormal varictions in test conditions and
canopy deployment.

In order to substantiate the findings odbtained on canopy models,
additional measursments of the dynamic pressure distribution
should be performed on full scale canopies during free-flight
testa.

Yor the finite mass operating case, Quite different results and
relationships may be expected. The two different operating modes
should therefore bdbe separated during further investigations.
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APPENDIX I

PARACHUTE CARNOPY MODELS

Detail dravings of the four camopy models used AQuring the experi.-
mental test program are shown in Pigures 84 thru 87,
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APPEIDIX 1I

COMPARATIVE PRECSURE CORFPICIENT VERSUS TINE
RELATIONSHIPS

A Oomplete picture of the pressure versus time relationships fox
oach canopy typs snd deploysent velooity is presented in Figures
88 thru 102 in which the differential, internal and external
pre.sure coefficients arec plotted versus e common time dase.
8in.e the plottings are based upcn smoothed dats, reproduction
of the original ocscillograph traces are presented slso to shovw
the fluctuations in pressures actually encountiered.

As may ba seen on the original traces, a recording of the foroe
genorated by the ocanopy model during inflation was made during

each run, Although a numerical evaluation of the force traces

wvae not performed, they are presented here for oorrelative purposes.
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AFPENDIX Il

CORE CENTER -.INE PRESSURE MFALUREMENTS

Additional ~'~41 tunnel tests were conducted tc determine the

magnitude s1d time relationship of local preseures at locations

Ve

other than -long the canopy curd centerline. Luring these tests,
the four pressure iraneducers wire located on the gore center

line, epac ¢ 90 degress apart cver the surfsce of the canopy, and 1

arranged in . similar manner as for the previous tests.

Analyzing all sata obiained, nc significant difference in either
the magnitude or time relationship of the pressures as compared to

the measurements along the cord centerline were datected.

A typical example of the pressure data obtained during this test
serias is pressnted 1 Pigures 103 thru 105. These graphs show the
realationship betwaen the differential pressure cosfficient, °pd'

and time for each of the fonur locations on a ringslot typs canopy
deployed at a free streax velucity of 100 ft/aeo.

et v =
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